Truncated importance sampling

نویسنده

  • Edward L. Ionides
چکیده

Importance sampling is a fundamental Monte Carlo technique. It involves generating a sample from a proposal distribution in order to estimate some property of a target distribution. Importance sampling can be highly sensitive to the choice of proposal distribution, and fails if the proposal distribution does not sufficiently well approximate the target. Procedures which involve truncation of large importance sampling weights are shown theoretically to improve on standard importance sampling by being less sensitive to the proposal distribution and having lower mean squared estimation error. Consistency is shown under weak conditions, and optimal truncation rates found under more specific conditions. Truncation at rate n is shown to be a good general choice. An adaptive truncation threshold, based on minimizing an unbiased risk estimate, is also presented. As an example, truncation is found to be effective for calculating the likelihood of partially observed multivariate diffusions. It is demonstrated as a component of a sequential importance sampling scheme for a continuous time population disease model. Truncation is most valuable for computationally intensive, multi-dimensional situations in which finding a proposal distribution that is everywhere a good approximation to the target distribution is challenging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated Importance Sampling for Reinforcement Learning with Experience Replay

Reinforcement Learning (RL) is considered here as an adaptation technique of neural controllers of machines. The goal is to make Actor-Critic algorithms require less agent-environment interaction to obtain policies of the same quality, at the cost of additional background computations. We propose to achieve this goal in the spirit of experience replay. An estimation method of improvement direct...

متن کامل

Sample Efficient Actor-Critic with Experience Replay

This paper presents an actor-critic deep reinforcement learning agent with experience replay that is stable, sample efficient, and performs remarkably well on challenging environments, including the discrete 57-game Atari domain and several continuous control problems. To achieve this, the paper introduces several innovations, including truncated importance sampling with bias correction, stocha...

متن کامل

Application of adaptive sampling in fishery part 2: Truncated adaptive cluster sampling designs

There are some experiences that researcher come across quite number of time for very large networks in the initial samples such that they cannot finish the sampling procedure. Two solutions have been proposed and used by marine biologists which we discuss in this article: i) Adaptive cluster sampling based on order statistics with a stopping rule, ii) Restricted adaptive cluster sampling. Until...

متن کامل

A framework for adaptive Monte Carlo procedures

Adaptive Monte Carlo methods are recent variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented in [24, 23, 1, 2]. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practi...

متن کامل

Application of adaptive sampling in fishery part 2: Truncated adaptive cluster sampling designs

There are some experiences that researcher come across quite number of time for very large networks in the initial samples such that they cannot finish the sampling procedure. Two solutions have been proposed and used by marine biologists which we discuss in this article: i) Adaptive cluster sampling based on order statistics with a stopping rule, ii) Restricted adaptive cluster sampling. Until...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006